Workshop on Machine Translation


  • New York, United States of America


Shared Tasks


Day 1

8:45 Opening Remarks
9:00 Session 1: Paper Presentations
Morpho-syntactic Information for Automatic Error Analysis of Statistical Machine Translation Output
Maja Popovic, Adrià de Gispert, Deepa Gupta, Patrik Lambert, Hermann Ney, José B. Mariño, Marcello Federico, Rafael Banchs
9:30 Initial Explorations in English to Turkish Statistical Machine Translation
‪İlknur Durgar El-Kahlout, Kemal Oflazer
10:00 Morpho-syntactic Arabic Preprocessing for Arabic to English Statistical Machine Translation
Anas El Isbihani, Shahram Khadivi, Oliver Bender, Hermann Ney
10:30 ☕️
11:00 Session 2: Paper Presentations
Quasi-Synchronous Grammars: Alignment by Soft Projection of Syntactic Dependencies
David Smith, Jason Eisner
11:30 Why Generative Phrase Models Underperform Surface Heuristics
John DeNero, Dan Gillick, James Zhang, Dan Klein
12:00 Phrase-Based SMT with Shallow Tree-Phrases
Philippe Langlais, Fabrizio Gotti
12:30 🍴
14:00 Session 3: Paper Presentations
Searching for alignments in SMT. A novel approach based on an Estimation of Distribution Algorithm
Luis Rodríguez, Ismael García-Varea, Jose A. Gámez
14:30 Invited Talk
Kevin Knight
15:30 ☕️
16:00 Session 4: Paper Presentations
Discriminative Reordering Models for Statistical Machine Translation
Richard Zens, Hermann Ney
16:30 Generalized Stack Decoding Algorithms for Statistical Machine Translation
Daniel Ortiz-Martínez, Ismael García-Varea, Francisco Casacuberta
17:00 N-Gram Posterior Probabilities for Statistical Machine Translation
Richard Zens, Hermann Ney

Day 2

9:00 Session 5: Paper Presentations
Partitioning Parallel Documents Using Binary Segmentation
Jia Xu, Richard Zens, Hermann Ney
9:30 Contextual Bitext-Derived Paraphrases in Automatic MT Evaluation
Karolina Owczarzak, Declan Groves, Josef Van Genabith, Andy Way
10:00 How Many Bits Are Needed To Store Probabilities for Phrase-Based Translation?
Marcello Federico, Nicola Bertoldi
10:30 ☕️
11:00 Session 6: Shared Task
Manual and Automatic Evaluation of Machine Translation between European Languages
Philipp Koehn, Christof Monz
11:30 NTT System Description for the WMT2006 Shared Task
Taro Watanabe, Hajime Tsukada, Hideki Isozaki
11:45 Mood at work: Ramses versus Pharaoh
Alexandre Patry, Fabrizio Gotti, Philippe Langlais
12:00 🍴
14:00 Session 7: Shared Task
Stochastic Inversion Transduction Grammars for Obtaining Word Phrases for Phrase-based Statistical Machine Translation
Joan Andreu Sánchez, José Miguel Benedí
14:15 PORTAGE: with Smoothed Phrase Tables and Segment Choice Models
Howard Johnson, Fatiha Sadat, George Foster, Roland Kuhn, Michel Simard, Eric Joanis, Samuel Larkin
14:30 Syntax Augmented Machine Translation via Chart Parsing
Andreas Zollmann, Ashish Venugopal
14:45 TALP Phrase-based statistical translation system for European language pairs
Marta R. Costa-jussà, Josep M. Crego, Adrià de Gispert, Patrik Lambert, Maxim Khalilov, José B. Mariño, José A. R. Fonollosa, Rafael Banchs
15:00 Phramer - An Open Source Statistical Phrase-Based Translator
Marian Olteanu, Chris Davis, Ionut Volosen, Dan Moldovan
15:15 Language Models and Reranking for Machine Translation
Marian Olteanu, Pasin Suriyentrakorn, Dan Moldovan
15:30 ☕️
16:00 Session 8: Shared Task
Constraining the Phrase-Based, Joint Probability Statistical Translation Model
Alexandra Birch, Chris Callison-Burch, Miles Osborne, Philipp Koehn
16:15 Microsoft Research Treelet Translation System: NAACL 2006 Europarl Evaluation
Arul Menezes, Kristina Toutanova, Chris Quirk
16:30 N-gram-based SMT System Enhanced with Reordering Patterns
Josep M. Crego, Adrià de Gispert, Patrik Lambert, Marta R. Costa-jussà, Maxim Khalilov, Rafael Banchs, José B. Mariño, José A. R. Fonollosa
16:45 The LDV-COMBO system for SMT
Jesús Giménez, Lluís Màrquez
17:00 Panel Discussion


General Task

Full results of the shared task: Manual and Automatic Evaluation of Machine Translation between European Languages

Want to learn more about WMT06?

Edit this article →

Machine Translate is created and edited by contributors like you!

Learn more about contributing →

Licensed under CC-BY-SA-4.0.

Cite this article →